

EMC FY15Q1 Upgrade Review

GFS upgrade

CEE

Presented by:

Mark Iredell based on work done by Global Climate and Weather Modeling Branch

Charter Overview

- This upgrade is planned for November, 2014
- System description
 - This is a change to the GDAS and GFS.
- What's being changed in the system
 - Model
 - T1534 Semi-Lagrangian
 - Use of high resolution daily SST and sea ice analysis
 - Physics
 - Land Surface
 - Post Processor
 - Analysis upgrades
- Expected benefits to end users associated with upgrade
 - Major upgrade in global modeling capability.
 - Significant improvement in forecast skill
- This implementation will put GFS/GDAS into EE process.

Analysis Highlights

Structure

- T574 analysis for T1534 deterministic
- Code optimization
- Observations
 - GPSRO enhancements improve quality control
 - Updates to radiance assimilation
 - Assimilate SSM/IS UPP LAS and MetOp-B IASI radiances
 - CRTM v2.1.3
 - New enhanced radiance bias correction scheme
 - Additional satellite wind data hourly GOES, EUMETSAT
- EnKF modifications
 - Stochastic physics in ensemble forecast
 - T574L64 EnKF ensembles

Model Highlights (1)

- T1534 Semi-Lagrangian (~13km)
- Use of high resolution daily SST and sea ice analysis
- High resolution until 10 days
- Dynamics and structure upgrades
 - Change from Lagrangian to Hermite interpolation in the vertical to reduce stratospheric temperature cold bias.
 - Restructured physics and dynamics restart fields and updated sigio library
 - Divergence damping in the stratosphere to reduce noise
 - Added a tracer fixer for maintaining global column ozone mass
 - Major effort to make code reproducible

Model Highlights (2)

- Physics upgrades
 - Radiation modifications -- McICA
 - Reduced drag coefficient at high wind speeds
 - Hybrid EDMF PBL scheme and TKE dissipative heating
 - Retuned ice and water cloud conversion rates, background diffusion of momentum and heat, orographic gravity-wave forcing and mountain block etc
 - Stationary convective gravity wave drag
 - Modified initialization to reduce a sharp decrease in cloud water in the first model time step
 - Correct a bug in the condensation calculation after the digital filter is applied

Model Highlights (3)

- Boundary condition input and output upgrades
 - Consistent diagnosis of snow accumulation in post and model
 - Compute and output frozen precipitation fraction
 - New blended snow analysis to reduce reliance on AFWA snow
 - Changes to treatment of lake ice to remove unfrozen lake in winter
 - Land Surface
 - Replace Bucket soil moisture climatology by CFS/GLDAS
 - Add the vegetation dependence to the ratio of the thermal and momentum roughness, Fixed a momentum roughness issue

Post - Processer Highlights

- Faster/less memory version
- .25 degree post file instead of master grib file (GRIB2)
- Accumulation bucket changed from 12 hour to 6 hour between day 8 and day 10
- Add user requested fields
 - frozen precipitation fraction
 - ozone at 150, 200, 250, 300, 350, and 400 mb,
 - 2m dew point,
 - wind chill and heat index,
 - instantaneous precipitation type
 - membrane SLP in GDAS pgb files
 - Improved icing algorithm in post
 - Higher precision rh
- BUFR station list to newer NAM/GFS list

Parallel Status

- All components of the system, including Storm-Relocation, OBSPROC, EMC-Surface, GSI, ENKF, GSM, Post-processing, were built in the EE structure, are frozen, and have been handed off to NCO for implementation.
- NCO is working on setting up a 30-day pre-implementation parallel, which will be run on the development machine.
- Parallels and verification pages
 - Prhs14: 01/01/2014 ~ present

running

- http://www.emc.ncep.noaa.gov/gmb/wd20rt/vsdb/prhw14
- Prhs13: 05/16/2013 ~ 12/31/2013

completed

- http://www.emc.ncep.noaa.gov/gmb/wd20rt/vsdb/prhs13
- Prhs12: 05/01/2012 ~ 11/06/2012

completed

- http://www.emc.ncep.noaa.gov/gmb/wd20rt/vsdb/prhs12
- Prhs11: 05/20/2011 ~ 12/31/2011

completed (on Zeus)

- http://www.emc.ncep.noaa.gov/gmb/wx24fy/vsdb/prhs11
- http://www.emc.ncep.noaa.gov/gmb/wx24fy/vsdb/prhs11b/
- merged 2012/2013/2014 http://www.emc.ncep.noaa.gov/gmb/wx24fy/vsdb/gfs2015/

Results - Merged 2012/2013/2014

see http://www.emc.ncep.noaa.gov/gmb/wx24fy/vsdb/gfs2015/ for more detail. Note that Hybrid ENKF 3D-VAR GSI was implemented into operation after May 22, 2012

Link to scorecard

http://www.emc.ncep.noaa.gov/gmb/wx24fy/vsdb/gfs2015/www/s corecard/mainindex.html

Real-Time Parallel in the past 31 Days

Prhw14 is T1534 parallels

Precipitation Skill Scores, 00Z Cycle Merged 2012/2013/2014

Improved ETS score and reduced forecast BIAS for all intensity and forecast lead time.

Precipitation Skill Scores, 12Z cycle Merged 2012/2013/2014

Improved ETS score and slightly reduced forecast BIAS for all intensity and forecast lead time.

Fit to RAOBS, RMSE Merged 2012/2013/2014

Global Mean Temperature RMSE

T (K) RMSE over Globe: fit to ADPUPA 00Z Cycle 20120510-20140920 Mean

Global Mean Wind RMSE

VWND (m/s) RMSE over Globe: fit to ADPUPA OOZ Cycle 20120510-20140920 Mean

Fit to RAOBS, Bias Merged 2012/2013/2014

Global Mean Temperature Bias

T (K) Bias over Globe: fit to ADPUPA OOZ Cycle 20120510-20140920 Mean

Reduced tropospheric warm bias, increased near surface warm bias

Global Mean Wind Bias

VWND (m/s) Bias over Globe: fit to ADPUPA OOZ Cycle 20120510-20140920 Mean

Strengthened tropospheric wind, slightly weakened stratospheric wind,

CONUS T2m, Fit to Sfc Obs Merged 2013/2014

Forecast Hour

10-m Wind and 2m RH, Fit to Sfc Obs Merged 2013/2014

Hurricane Verification 2012/2013/2014

Hurricane Intensity Errors - East-Pacific 20122014

Hurricane Verification 2012/2013/2014

Hurricane Track Errors - West-Pacific 20122014 20120501 20140920 4cvc

Hurricane Intensity Errors - West-Pacific 20122014 20120501__20140920__4cyc

Hurricane Track Verification, 2011

HS11: T1534 parallel

ENKF: T574 ENKF-3DVAR

parallel

ENKF was run only for part of the 2011 hurricane season (08/20/2011 – 10/16/2011)

2012 Hurricane Sandy

Summary:

- At day 7, HS12 is significantly better than AVNO. HS12 showed the tendency to move Sandy northwestward.
- At day 6, HS12 is slightly better than AVNO, but the difference is small.
- At day-5 and day-4, the results are mixed. HS12 is better than AVNO for certain cycles but worse for other cycles.
- At day 3 and less, HS12 is much better than AVNO. HS12 forecast is as good as or slightly better than ECMWF forecast.
- Overall, the forecast of hurricane Sandy's track is improved in the experimental T1534 semi-lag GFS in comparison with the operational T574 Eulerian GFS. The improvement is most significant for short-lead forecast within 72 hours. Long-lead 6 to 7-day forecasts showed improvement for certain cycles.

Mean Track and Intensity Errors 22 - 30 October 2012, 4 cycles/day

Hurricane Track Errors - Atlantic 2012 Sandy__20121022_20121030_4cyc

Hurricane Intensity Errors - Atlantic 2012 Sandy_20121022_20121030_4cyc

Tracks from Forecast Cycles 20121022: 12Z and 18Z 7 days before landfall

Tracks from 20121023: 00Z, 06Z, 12Z and 18Z Cycles 6 days before landfall

Observed: Beginning 2012102312, every 12 hours

Tracks from 20121024: 00Z, 06Z, 12Z and 18Z Cycles 5 days before landfall

Tracks from 20121025: 00Z, 06Z, 12Z and 18Z Cycles 4 days before landfall

Tracks from 20121026: 00Z, 06Z, 12Z and 18Z Cycles 3 days before landfall

Extratropical Cyclone Track Errors (fcst cs analy) June-Aug 2014 (Lat > 20N/S)

Courtesy of Guang Ping Luo

Summary

- All codes are now frozen, built in EE structure, and handed off to NCO for implementation.
- Results are reasonable
 - Improved precipitation skill scores
 - Improved hurricane track in Atlantic and Western Pacific, but worsened in Eastern Pacific; Reduced intensity errors in all basins.
 - Reduced mid-latitude storm track errors.
 - Reduced global mean temperature bias in the upper troposphere;
 strengthened (improved) tropospheric winds but slightly weakened stratospheric winds.
 - Reduced nighttime 2m temperature cold bias over the Northern Great
 Plains. Large biases still exist in Northeast and Southwest.
 - improved 500-hPa HGT AC in both the Northern and Southern Hemispheres.

BACKUP SLIDES

Extratropical Cyclone Track Errors

Parallel GFS has consistent improvements over operations GFS in track errors except for 96hr forecasts

GFSO (red) – Operations GFS; GFSP (blue) – Parallel GFS On average, 2.4 NM improvements in GFSP over GFSO.

Fcst hr	0	12	24	36	48	60	72	84	96	108	120
Cases	4025	3737	3297	2262	1357	822	488	296	178	116	79

5-min data, with land area in red. Many open water lakes in Canada.

Updated condensation process at 1st timestep and after Digital Filter

Old scheme

- Temperature and specific humidity tendencies are set to zero at 1st forecast timestep. No condensation occurs.
- After calling digital filter incorrect values of temperature and humidity are used in condensation calculations

Updated scheme

- Initialize the temperature and specific humidity from the initial conditions passed into gloopr.
- Effect of advection is included in the condensation.

Updated condensation process at 1st timestep and after Digital Filter.

Global Mean Cloud Water from a single forecast (IC 2011071500):

- Green: old scheme
- Blue: new scheme without advection
- Red: new scheme with advection, final version.

Fit to Surface Obs Merged 2013/2014

CONUS West

CONUS East

Reduced CONUS East nighttime cold bias